

Contents
If you read nothing else, read this.............................. 3
Introduction.. 3
Concepts you should know (and understand)...... 5
	 Technical terms.. 5
	 Tracking in general... 5
	 YM2149 specifics...6
	 Specific to maxYMiser... 7
		 Songs and patterns.. 7
		 Everything’s a sequence...................................... 7
		 Sound channels..8
How things work...9
	 First of all, the maxYMiser’s layout......................9
	 The HELP page is your friend................................. 11
	 Patterns... 11
	 FX commands...12
	 Sequences.. 14
	 Instruments...15
	 YM and timer based instruments....................... 16
	 Sample based instruments......................................21
	 Pattern editing - a quick reference.................... 23
	 Song editing - a quick reference..........................24
How do I do a...?... 25
	 Note off.. 25
	 Glissando a k a pitch bend..................................... 25
	 Portamento a k a note glide..................................26
	 Vibrato..26
	 Arpeggio...28
	 Hammer-on or tapping..28
	 Tremolo...29
A case study - a maxYMiser song...............................30
Composing using an emulator.................................... 35
Are you missing anything in this guide?................ 37

3

If you read nothing else, read this
Obviously, I hope all of this will be worth reading, but if you want to
read as little as possible, and get started using the maxYMiser as quickly
as possible, read these chapters:

		 The HELP page is your friend (page 11)
		 Sine Bass - a complete type-in walkthrough (page 19)
		 Pattern editing - a quick reference (page 23)
		 Song editing - a quick reference (page 24)

Introduction

Who is this text for?
This text is for you. Assuming, of course, that you’re interested in learn-
ing how to make music using Gareth “gwEm” Morris’ Atari ST program
“maxYMiser”.
This text assumes that you have a little experience with trackers, that
you understand hexadecimal notation (i e counting from 0 to 15 using
the numbers 0 through 9 and the letters a through f), and that you know
a little about music. I will not be using phrases like “phrygian cadences”,
but if words like “chord”, “note”, “pitch” and “octave” scare you, you
might want to keep a friend (or wikipedia) close by while reading this.
This guide will not teach you everything about the maxYMiser. I strongly
encourage you to read the maxYMiser documentation and all documen-
tation that is recommended therein, but I hope that with this guide only,
you should be able to get a feel for the program and hopefully finish
your first maxYMiser song.

4

What does this text not claim to be?
This text is not a complete manual, or a reference to the maxYMiser, the
YM2149 soundchip, the Atari ST or any Atari ST emulator for any operat-
ing system.
This guide does not tell you everything about the maxYMiser. The docu-
mentation that ships with the maxYMiser is to be considered mandatory
reading.
Also, this text does not claim to be neutral or objective. I have tried to
make it clear when I am conveying a personal opinion rather than undis-
putable fact, but I’m sure you’ll find my own feelings on subjects shine
through, and if this disturbs you, I apologize.

About the author
Per Almered is a 37-year-old songwriter/producer from Sweden. He’s been
making music on computers since 1984, and bought his first Atari ST in
1987. Between 1991 and 1995 he released 11 or 12 demos under the name
“Excellence In Art (XiA)”, and also did music and sound effects for UDS’
pinball game Obsession, one of the last games (professionally) published
for the ST.
These days he lives in Lund in the south of Sweden with his wife, two
tortoises and a cat. He makes much too little money from the music
business, but at least enjoys what he’s doing, and sometimes he’s even
able to take the time to try and help out the “demo scene” community,
that has given him so much over the years in terms of knowledge, enjoy-
ment, friends and not least a wife (you collect coupons, and when you
have 1500, you send them in, and a wife arrives in the mail 6-8 weeks
later, I swear on my ukulele collection it’s true). This document is one
such little “giving back” project.

The maxYMiser website
The maxYMiser website, where you can find the maxYMiser and this
guide is located at:
http://www.preromanbritain.com/maxymiser

http://www.preromanbritain.com/maxymiser

5

Thanks
Thanks to gwEm for encouraging and proofreading this guide, and of
course for making the maxYMiser in the first place.
Thanks must also go to Anders Eriksson (Evil/DHS) for luring me back to
the Atari.

Concepts you should know
(and understand)

Technical terms
A dollar sign ($) denotes a hexadecimal value. A “nibble” is a 4-bit value,
or a single char in a hexadecimal number. For instance, in the hexa-
decimal number $c6, the “c” is the “high nibble” and the “6” is the “low
nibble”.
Most values in maxYMiser are “signed” values. This means dual-nibble
values between $00 and $7f are positive, and values between $80 and
$ff are negative. So if, for example, you want to make a glissando go-
ing down as slowly as possible, you would enter the FX command “Hff”,
where the “ff” part means $ff, i e “-1”. “fe” would mean “-2” etc.

Tracking in general
As you (hopefully) know from other tracker programs (or “trackers”), a
song is made up from patterns, and a pattern is a sequence of notes and
commands.
The tempo (although “speed” is a better word, to be honest) of a song
is given in a value that’s usually between 3 and 7, meaning how many
“ticks” (a tick is classically a 50th of a second) pass between each pattern
row.

6

YM2149 specifics
Although I strongly recommend you read the YM2149 specifications, I
suspect many of you are like me - you don’t want to read more than is
absolutely necessary, so here are some of the most important technical
details you need to know about this soundchip:

	 Non-linear pitch	 The YM2149 doesn’t have linear pitch. This means
a vibrato with an amplitude of say, $10 will sound
very different in the lower octaves than it will in the
higher ones. The vibrato will be much wider, in cents,
in the higher octaves. Put another way, the higher the
octave, the smaller the pitch variations need to be
to correspond to lower notes’ pitch change in cents
or semitones or whatever musical measurement of
pitch you use. Put yet another way, if a portamento in
octave 4 takes exactly one second to reach its target
note 4 semitones up, it’s not going to have arrived
within once second if you use the same portamento
value in octave 2.

	 Noise	 The noise generator is a single generator, shared by all
YM hardware channels. So you can’t play one noise in
one channel and another noise on another channel.
Higher channels have priority over lower channels.

	 Buzz sounds	 Buzz and SyncBuzz sounds use the YM2149’s hardware
envelopes (and I use the word “envelope” quite loose-
ly, because these envelopes are really crap), and these
envelopes have the disadvantage of not allowing any
volume control (“crap” really isn’t a strong enough
word for these envelopes). Only one envelope can be
active at a time, practically meaning you probably

7

won’t use it in more than one channel. Higher chan-
nels have priority over lower channels. Buzz sounds
are popular as bass sounds, and can create complex
sounds at no CPU cost at all by combining them with
a square wave. SyncBuzz sounds were, to the best of
my knowledge, the first timer based effect Atari musi-
cians used, and it’s still useful (and used) today.

	 Timer tricks	 Several of the “cooler” sounds created by the
maxYMiser aren’t made entirely by the soundchip
itself. SID sounds, SyncBuzz sounds and DigiDrums
(but not hardware samples) are created using timer
tricks, meaning the CPU jumps in and modifies the
sound, sometimes as often as several thousand times
a second. If your music is to be used in a CPU criti-
cal environment, such as a demo or game, you need
to discuss with the programmer what timer-based
instruments your song can be allowed to use. Also,
some timer tricks will be severely mangled if the
demo or game uses the blitter chip available in sev-
eral ST/Falcon models.

Specific to maxYMiser
Songs and patterns

A song in maxYMiser consists of a number of patterns. However, to save
memory, each channel has its own pattern.
A pattern has 64 rows, and each row can contain a note, volume com-
mand and two FX commands, or any combination of these. Using the
“Bxx” FX command, you can shorten a pattern.

Everything’s a sequence
One of the basic building blocks in maxYMiser is the “sequence”. A
sequence is a list of values, nothing else. Whether a sequence controls

8

volume or arpeggio or YM mixer settings depends on where it’s used.
Volume, YM mixer settings, arpeggios, vibrato, noise settings and much
much more are controlled by sequences. A maxYMiser instrument is re-
ally little else than a collection of different sequences controlling differ-
ent aspects of the sound.

Sound channels
Depending on memory and CPU constraints, a maxYMiser song can use
between 3 and 5 channels of audio. The first three are “YM channels”,
representing the three hardware channels of the YM2149 soundchip. The
last two are “sample channels”.
Sample channels use the STe DMA to play back samples (and thus won’t
make any sound on the ST, STF or STFM models). Used in native mode,
the CPU cost is zero, but you’re limited to playback in four sample rates:
6 258Hz, 12 517Hz, 25 033Hz or 50 066Hz. Also, in native mode, the replay-
er will reserve a bit of memory for different volume levels.
You also set the sample channels to “1ch” or “2ch”, meaning 1- or 2-chan-
nel modes. Here, you can replay samples in seminotes (exact frequencies
are found in the HELP page), and use the volume column without the
extra memory demands of the native mode. However, the resampling
involved will cost a bit of CPU.
Note that you can play samples in a YM channel too, using the
DigiDrums mode, but your sample rate control is limited (so it’s mainly
useful for atonal material), and the CPU cost will be high.

9

How things work

First of all, the maxYMiser’s layout
Just to make sure we’re all on the same page when I start throwing
around terms like “de-tune matrix” and “sequence editor”, let me show
you the basics of the maxYMiser’s layout.

These buttons are the main dashboard. Here, you can play the current
song (“PLAY SNG”), play just the currently selected patterns over

and over again (“PLAY PTN”), access disk options to load and
save songs and instruments, read the built-in help etc.

10

All the buttons in the left column, as well as the bottom two in
the right column, open up pages in this area.

This is the pattern editor, visible at all times. In this screenshot, all you
see is the three YM channels, but using the “Tab” key or the arrow keys
to move to the right, you can access the two sample channels as well.

11

The HELP page is your friend
The HELP page is a brilliant little thing to have, especially if you’re not
in an emulator (where you can easily switch to documentation you may
have open in other windows). Take a look at it, learn what information it
contains (it even contains stuff that’s not in the maxYMiser documenta-
tion!), and make a habit of using it.
The HELP page is accessed by clicking the “HELP” button, and clicking in-
side the text area makes it “Active”, which means you can change pages
using the up and down arrow keys.

Patterns
As mentioned earlier, a maxYMiser pattern contains data for one channel
only.
A pattern row for a YM channel contains the following columns:

		 Note - Octave, Instrument, Volume, FX1, FX2

A pattern row for a sample channel contains the following columns:

		 Note - Octave, Sample, Volume

Common to both channel types, “Volume” is used as a negative offset
value, meaning that if you enter a “3”, the current volume output on that
channel is reduced by 3.
The FX1 and FX2 columns (only available in YM channels) are three-nibble
values, the first of which determines which FX command is used (and
isn’t really a nibble at all, it accepts any letter of the alphabet, although
not all of them represent a command), and the second two depend on
that FX command. One extremely powerful feature of the maxYMiser is
the fact that it has two FX columns, which at times seems unnecessary,
but really can save quite a lot of headaches at times.

12

FX commands
The most common FX commands (for a complete list, please refer to the
maxYMiser documentation or the HELP page) are:

	 Bxx	 Pattern break. When the replayer encounters this, it immedi-
ately moves all channels to the next song position. Yes, you
only need this in one of the patterns, which can save quite a
bit of memory. Place the “Bxx” FX command on the last row
you want to be played. So if you want to make a pattern play
only its first 32 rows, you would place the “Bxx” command on
row $1f.

	 Hxx	 Pitch slide. This command is new from v1.29 (which appeared
as a beta while I was working on this document, hopefully it
will be out as a stable version by the time you read this), and
I personally drew a huge sigh of relief when it was intro-
duced, because I had missed it badly. The current note’s pitch
simply starts sliding up (if “xx” is a value between $01 and
$7f) or down (if “xx” is a value between $ff and $80 with the
speed “xx”.

	 Lxx	 Volume sequence. The volume sequence “xx” replaces the
current instrument’s volume sequence. The position in the
volume sequence is ignored, by the way; the replayer starts
playing the new volume sequence from start. Personally, I
mainly use this as a “note off” command, to fade out the cur-
rently playing note’s volume.

	 Pxx	 Portamento. When combined with a note, the pitch of the
previous note glides towards the new note’s pitch with a
speed of “xx”. If not combined with a note, and a portamento
is currently playing, the command simply changes the speed
of the current portamento.

13

	 Vxx	 Vibrato sequence. The vibrato sequence “xx” replaces the
currently playing vibrato sequence, and starts playing from
the start of the new sequence. Personally, this is how I add
vibrato to a lead sound, because I usually don’t want the vi-
brato playing from the start of the sound, but a bit in, and by
adding the vibrato manually in the pattern, I get a lot more
control. Also, I can use different vibratos at different times,
either depending on the octave or the situation.

	 Zxx	 Demo synchronisation code. This command does absolutely
nothing to your music, but if your music is to be used in
a program, the programmer can read this code and let it
control ...stuff. For instance, if you’re making a demo, and
the design document (you do have a design document, don’t
you? Hah!) states “logo appears on first drum beat”, you can
simply add a “Z01” command at the pattern row of that drum
beat, and tell the programmer “at the first drum beat, I set
the sync code to 01”, and he or she will love you forever for
making his or her job so much easier. Please note that a sync
code of $00 is the default value, so make it a habit not to use
the value $00; you still have a total of 255 different values to
play around with.

14

Sequences
I know you’re dying to get to making your first song by now, and to
make a song you need to make a couple of instruments. But to make an
instrument, you need to know how to make and edit a sequence.
Sequences are edited in the lower right part of the maxYMiser screen,
under the label “SEQUENCE EDITA”.

The sequence editor sits happily in the lower right corner of the screen.
It pays only a modest rent, and the landlady bakes scones

for it every other sunday.

Under the label “Sequ” is a number field containing a hexadecimal value
representing the currently edited sequence. Clicking the field lets you
edit it, either by using the up/down arrow keys to scroll the value up or
down, entering a new value using the keys 0-9 and a-f, or (and this is
a brilliant feature!) pressing the “n” key to select the next unused se-
quence. You will use this shortcut a lot, trust me. Clicking outside of the
number field or pressing the Return key (or the Esc key) leaves the field.
In the same way, you can edit the “Length” number field (this determines
how long the sequence is, max is $1f) and the “Repeat” number field
(which determines where the sequence should jump to after reaching
the end, it’s basically a “GOTO” command).
The sequence itself is edited in the large section between the “SEQUENCE
EDITA” label and the “Length” label. Click anywhere inside the sequence
area to edit it, using the arrow keys to move around and the 0-9 and a-f
keys to edit the values.

15

If you hold down the “Shift” key, you can use the up and down arrow
keys to increase or decrease the value currently under the cursor.
While editing a sequence, you can change its length using the “Insert”
key to insert a row, and the “Delete” key to delete a row.
To stop editing, click outside the area, or press the Return key (or the Esc
key).

Instruments
As said elsewhere, there are two different types of channels in
maxYMiser: YM channels and sample channels. And there are two types
of instruments as well; YM and timer based instruments (or just “YM
instruments”) and sample based instruments (or just “sample instru-
ments”).
IMPORTANT: To hear a YM instrument when playing the Atari keyboard
as a piano-style keyboard, the cursor needs to be on the note-octave part
of a YM channel. To hear a sample instrument, the cursor needs to be on
the note-octave part of a sample channel.
HOT TIP: You can connect a MIDI keyboard to your Atari and enter notes
using that instead. And as if that wasn’t cool enough, you can even do
this in the emulator Steem, which is just brilliant. See the maxYMiser
documentation and if applicable, the Steem documentation, for more
info.

16

YM and timer based instruments
The structure of an instrument

Instrument editing is done in the rightmost third of the maxYMiser
screen.

This area of the screen is used for editing instruments and sequences.

The top section shows the instrument list, where you can change the
currently selected instrument using the mouse, or the “+” and “-” keys of
the numeric keypad.
Just below that is the de-tune matrix, which is a square of clickable flags
that determine what features the current instrument can use, for what
sound generator (Square, Buzz or Timer).

17

The de-tune matrix determines what features
an instrument is allowed to use.

If the “Arpeggio” block isn’t flagged for the correct sound generator, that
instrument isn’t going to be allowed to play an arpeggio, no matter if
you give it a correct arpeggio sequence (however, you can set these flags
using pattern commands, see the maxYMiser documentation for details).
Below the de-tune matrix you find the seven sequence pointers, and this
is where you decide what sequence does what:

	 Vol	 Volume sequence. The three first nibbles in the sequence
are ignored, the fourth sets the volume value for the chan-
nel. $0 is the lowest, $f is the highest. Unless your sound is a
Buzz or SyncBuzz sound (these types of sounds are always at
maximum volume, $f, for technical reasons), you need to set a
volume, or your instrument will be quiet. Too quiet...

	 Arp	 Arpeggio sequence. All nibbles are used, so if you want to use
negative numbers, remember that -1 is $ffff, -2 is $fffe etc.

	 Vib	 Vibrato sequence. Similar to arpeggio, except values are hard-
ware pitch offsets and not semitones.

	 Mix	 YM mixer sequence. This is absolutely crucial for sound gen-
eration. An empty sequence here is going to result in an in-
strument with no sound. Rather than explain all values here,
I’m just going to give you the most common combinations,

18

and point you to the maxYMiser documentation (by which I
also mean the HELP page, by the way) for an in-depth expla-
nation.

	 10 00	 Noise
	 01 00	 Square
	 00 10	 Buzz (requires you to set Buzz Wave to $8, $a, $c or

$e)
	 01 05	 SID (requires a timer sequence of “00 0f, 00 00”)
	 00 1b	 SyncBuzz (similar to buzz, but stays in tune in

higher octaves ...at a CPU cost. It is similar to the
“sync” function sometimes found in analog synths)

	 00 05	 SID with custom waveform (last nibble in timer
sequence gives waveform)

	 00 0d	 DigiSample sound (choose sample with DigiSample
field just below)

	 Noi	 Noise sequence. Sets the noise color of the noise generator.
The first two nibbles are ignored, the range is $00 to $1f.

	 Fix	 Fixed frequency sequence. All four nibbles are used to set a
fixed frequency.

	 Tim	 Timer sequence. Only the last nibble is used. For SyncBuzz
sounds, you can give a sequence of up to 8 steps of different
buzzer waveforms. For SID sounds (set mixer to 00 05), you
can draw your own waveform (up to 16 steps; the more steps,
the higher the CPU cost). Note that the Repeat field isn’t used
in a timer sequence; the replayer always loops back to the
first value once it’s reached the end of the sequence.

Below the sequence columns are a number of other settings. “Seq Speed”
sets how many ticks (a tick is classically a 50th of a second, but you can
change it in the “Interrupt” field on the Normal page) the replayer will
wait between steps in ALL sequences. So you can’t use it to slow down
just a single sequence, this setting affects all seven sequence columns.

19

“Buzz Wave” selects which waveform will be used for Buzz sounds.
Only the values $8, $a, $c and $e will produce anything else than a click.
Notice that $8 and $c will often sound the same (as will $a and $e), but
once you start playing around with SyncBuzz, there is a difference.
“Instr Vol” is a negative offset for the entire instrument, similar to if
you use the volume column in the pattern to decrease the volume of
the instrument. This can make life easier in several ways; thanks to this,
you can design all your volume sequences to “max out” at volume $f,
and then adjust down using this field. This also lets you reuse volume
sequences for instruments with similar envelopes but different overall
volumes.

Some ready-made instruments to play around with

Sine Bass - a complete type-in walkthrough
This is an instrument I like a lot, I call it “Sine Bass”, and I thought I’d
give you step-by-step instructions for how to type it in.
For this tutorial, you need to start with a completely empty maxYMiser.
The fastest way to do that is to click the “ZAP/PACK” button, and on the
screen that shows up in the top left corner, click the “ZAP” button in the
top left of the matrix, representing “Devastate” and “All”.
Ok, let’s go:

	 1	 The first thing I always do is to set the YM mixer, otherwise I tend
to forget it. So, we need to create a new sequence: click the “Mix”
field just below the de-tune matrix and press the “n” key. The
maxYMiser now gives you the next unused sequence. The Mix field
says “01”, and the sequence editor displays your new sequence.
Press Return or click anywhere once to leave the field.

20

	 2	 Next we enter the YM mixer data into sequence $01. Click the
sequence area (anywhere between the “SEQUENCE EDITA” label
and the “Length” label) and change the last nibble into a “5”. The
sequence now reads “00 05”, which means we’re using a SID sound
with a custom waveform. Press Return (or click anywhere) to finish
editing the field.

	 3	 Now we need to set up a volume sequence. Click the “Vol” field
and press the “n” key to get a new unused sequence. Press Return
(or Esc) to finish editing the field.

	 4	 This sequence is going to be longer than a single step, so start by
editing the “Length” field to say “06”. Click the length field and
either type in “06” or use the arrow key up to adjust the value to
“06”. Press Return to finish editing the field.

	 5	 Now edit the volume sequence to read “00 0f, 00 0e, 00 0d, 00 0c,
00 0b, 00 0a” and press Return to finish the editing. So, that’s a
fairly quick volume change from $f to $a. However, if we leave it
like this, with the repeat set to $00, it’s going to go back to the

		 first row when it reaches the last one, creating a machine-gun
sound (...sort of), and we don’t want that. So let’s set the repeat to
“05”. Click the “Repeat” field and set it to “05”. Press Return to fin-
ish editing the field.

	 6	 Now we just need to enter the sample waveform. For a SID sound
with a custom waveform, we place the waveform in a timer se-
quence. So, to create a new one, click the “Tim” field and press the
“n” key to create a new sequence, followed by the Return key.

	 7	 Enter a length of “10” for the new sequence, leave the repeat at
“00” and enter the 	values “8, a, d, e, f, e, d, a, 8, 5, 2, 1, 0, 1, 2, 5” into
the last nibbles of the sequence rows. Press Return to finish edit-
ing, and you have your first sound! Play around with it a bit and
enjoy your hard work!

21

	 8	 Now all you have to do is name the sound. Right-click the sound’s
(empty) name in the instrument list and enter a name you like
(like “Sine Bass”). Also, save it to disk, using “DISK OP.” and “Instru-
ment” under the “Save” label. Now you can recall the sound into

		 any song you feel you want to use it in.

Classic SID Lead
Here’s a classic SID lead sound (although technically, it’s “just” PWM,
pulse width modulation, of a square wave).
		 Mix sequence: “01 05”
		 Vol sequence: “00 0a”
		 Tim sequence: Length 02, Repeat 00: “00 0f, 00 00”

Square wave major chord arpeggio, starting an octave up
Here’s an example using arpeggio. Don’t forget to set the “Arpeggio” flag
in the “Square” column in the de-tune matrix!
		 Mix sequence: “01 00”
		 Vol sequence: “00 0a”
		 Arp sequence: Length 06, Repeat 03: “00 13, 00 10, 00 0c, 00 07, 00

04, 00 00”

Sample based instruments
Sample based instruments offer at lot less editing possibilities than YM
and timer based instruments, and they can eat a bit of CPU (at least if
you’re not in native mode, see the previous chapter “Sound channels”),
but they offer a lot of interesting possibilities. For instance, in my acade-
my award winning song “Brit”, I use sampled chords, which brings a new
and interesting sound to the song, as well as saving YM channels.
A song can contain up to 8 samples, each with a maximum size of 32
kilobyte.
Under the label “DIGIDRUMS” at the bottom of, and near the far right
of the screen, you can see the current sample’s length, and load (“Lod”),
save (“Sav”) or clear (“Clr”) the current sample.

22

The maxYMiser expects samples to be in 8-bit signed format. If you load
a .WAV file (which needs to be 8-bit), it will sound nasty, because its
sample data will be unsigned, and maxYMiser expects signed sample
data. Also, the header information will make a tiny click in the beginning
of the sound, which probably won’t be noticeable on a crash cymbal, but
can be very annoying on a bass drum. However, the maxYMizer docu-
mentation has a solution: go to the “S. E. EXT” page and click the “Sign/
Unsign” button to recalculate the sample data from unsigned to signed
format. Then set the “Start” field to “0044” to skip the file header.
One thing you will notice fairly quickly is that sampled instruments
are fairly quiet. To combat this, the “S. E. EXT” page has “Vol” buttons
to change the volume of the sample by (destructively) modifying the
sample data. Personal reflection: And I do mean “destructively”. The
algorithm in maxYMiser won’t hesitate to introduce digital distortion
noise to your sound. If you have access to professional audio processing
software, a good brickwall limiter will do a much better job. Even so, I
generally don’t use volumes higher than $a or $b in songs using sampled
instruments, to give the sampled instruments a chance to be heard.
By the way, if you use non-Atari software to create or edit samples, re-
member the Atari ST only allows “8+3” filenames, meaning the file name
has a maximum of 8 characters (spaces and several special characters
aren’t allowed), with an extension of up to 3 characters.

23

Pattern editing - a quick reference
A row in a YM channel consists of 5 items: note-octave, instrument num-
ber, volume offset, FX1 command, and finally FX2 command.
Removing the instrument number (set it to “00”) means the note isn’t
retriggered.
The volume offset is a negative offset, meaning the value $4 decreases
the volume by 4.
The two FX commands are identical, and the reason there’s two of them
is simply so you can combine different commands.
To get in and out of pattern editing mode, press the spacebar.
The “Keys” section on the HELP page contains a list of keys used for
copying/pasting patterns/blocks etc.
When you’re in a note position (the leftmost part of a channel’s pattern),
the letter-keys of the Atari keyboard turn into a two-octave piano-style
keyboard, with the second-lowest row of keys (the one that spells Z X
C etc on an english keyboard) and the row two rows above it (starting
with Q W E on an english keyboard) representing the white keys. You can
select octaves using the F1-F8 keys.
HOT TIP: You can use a MIDI keyboard too, check the maxYMiser docu-
mentation for details (this even works in the Steem emulator).

24

Song editing - a quick reference

The song editor is found in the “Normal” screen.

The song editor is where you put all your patterns together to make
them into a song. Clicking on a pattern number in the song editor places
the cursor there, and you can either type in a pattern number using the
0-9 and a-f keys, or press the “n” key to get the next unused pattern.
Using the “Tab” key or arrow keys you can navigate around the song, and
the “Insert” and “Delete” keys inserts and deletes rows, respectively.
Holding down the “Shift” key allows you to step the current pattern
number up and down using the up and down arrow keys.
To leave the song editor, press the “Return” key, the “Esc” key, or click
anywhere.

Preset patterns
The song editor also has some interesting preset patterns:
Pressing the “Backspace” key while editing a position in the song editor
places an empty pattern at that position.
The “CapsLock” key places a “Note off” pattern, which is technically iden-
tical to a blank pattern with a note off command at its first position.
The spacebar key places a “Looping pattern”, which is only used in Jam
mode, which is outside the scope of this guide. In Normal mode, a Loop-
ing pattern makes the replayer simply skip that entire row of the song
editor.

25

How do I do a...?
The maxYMiser does many things its own way, and while almost all the
solutions are very good ones, I myself found myself scratching my head
a couple of times while making my first songs in it. So this section is
basically what I would have wanted during those first hours of playing
around with the program. Hope it helps you too.

Note off
There a number of ways to make a note stop sounding. The built-in “note
off” command is placed in a pattern using the “Caps Lock” key (technical-
ly, this does the same thing as putting a $f in the volume column, but at
a lower CPU cost). However, this kills the volume immediately, which is
rarely what I want. More often than not, I want the volume to fade out,
and there are a couple of ways to do this. The easiest way would be to
simply do a fade out using the pattern’s volume column, but this only re-
ally works well for slow fade-outs (because you can’t change the volume
faster than the speed of the song). For fast fade outs, I use a separate vol-
ume sequence that I trigger using the FX command “Lxx”. For a practical
example, take a look at the chapter “A case study - a maxYMiser song”.

Glissando a k a pitch bend
A glissando (or pitch bend) is when the pitch of a note rises or falls, usu-
ally more smoothly than semitone steps. In real life, a guitarist bending a
string is an upwards glissando, and a violinist letting a finger slide up or
down the neck is a glissando.
Glissandos in maxYMiser are done using the “Hxx” FX command. The “xx”
value determines the speed of the glissando. Remember that values $00
to $7f are positive values, and that values $ff to $80 are negative ones, so
to make a glissando going down as slowly as possible, use an “xx” value
of “ff” (-1).
IMPORTANT: For an instrument to be able to use glissando, the “Port/
Slid” flag has to be set in the de-tune matrix.

26

Portamento a k a note glide
A portamento is a pitch gliding between two notes, stopping when it
hits the target note. (Technically, many working musicians make no
difference between a glissando and a portamento, but in trackers, it is
traditional to make the distinction that a portamento has a target note,
at which the pitch stops changing, whereas a glissando never stops ...er,
never stops ...”glissing”.) A “true” portamento isn’t possible on a guitar
(although it can be argued “chromatic portamentos” are used in some
musical styles), but on a violin it’s when the player lets the finger slide
across the neck of the instrument until it reaches the target note.
Portamentos can’t be built into the instrument, it’s one of those things
you add in the pattern, using the “Pxx” FX command, where “xx” is the
speed, “01” being the slowest.
IMPORTANT: For an instrument to be able to use portamento, the “Port/
Slid” flag has to be set in the de-tune matrix.

Vibrato
Vibrato is an oscillating (or perhaps more clumsily, “vibrating”) pitch.
In real life, a guitarist or violinist letting the finger on the neck of the
instrument move slightly up or down the neck creates a vibrato.
In maxYMiser, vibratos can be done in several ways. You can have vibrato
built-in in the instrument, you can add vibrato with the “Vxx” FX com-
mand (the sequence “xx” replaces any built-in vibrato in the instrument),
or (and this is a lot more advanced and time-consuming, but sometimes
very effective) you can “fake” a vibrato using portamentos or glissandos.
In the vibrato sequence (if that’s the way you choose to go), remember
that values from $0000 up to $7fff are positive, and values from $ffff to
$8000 are negative, so the smallest possible vibrato in a sawtooth shape
would be a sequence of “00 01, 00 00, ff ff, 00 00”.
IMPORTANT: For an instrument to be able to use vibrato, the “Vibrato”
flag has to be set in the de-tune matrix.
HOT TIP: While you can type in vibrato manually in a sequence, there’s a
little tool that makes it a lot easier.
On the “S. E. EXT” page, under the “SEQUENCE EDITOR EXTENSION” label,

27

you can type in minimum and maximum values for the vibrato. The
“Oscillats” field ranges from $01 to $0f, the value $00 is displayed as “Ra”,
meaning “Ramp”. Now, the numerical values are vibrato speeds, with $01
being the slowest, $0f the fastest (it sets how many times the oscilla-
tion will be repeated for the duration of the sequence), and Ramp mode
meaning the waveform of the vibrato goes from one end of the range to
the other, then snaps back to the start value again, like a sawtooth (the
numerical values all use a triangle waveform). Below is a matrix of four
buttons that modify the currently edited sequence in the sequence edi-
tor. The “Gen” column means “Generate” and simply overwrites what-
ever’s in the sequence with new data. The “Mod” column means “Modify”
and somehow modifies the existing sequence with what’s generated (no,
I can’t really find a use for it, so I haven’t bothered researching what it
does exactly). The rows “Up” and “Down” determine if the generated
oscillation should start at the minimum or maximum value, respectively.
IMPORTANT: Remember to set a length for the sequence before generat-
ing it, a sequence length of 1 won’t create a vibrato.
In fact, when playing around with this function, I just set the length of
my sequence to $1f and played with the “Minimum”, “Maximum” and
“Oscillats” values, and was a bit disappointed because the steps between
“Oscillats” values are very coarse. However, by accident I discovered that
you can use the length of the sequence to fine-tune the vibrato speed;
lower lengths means higher vibrato frequency. Just remember to rebuild
the vibrato when you change the length of the sequence. Very clever,
very useful.
Personally, I always create vibrato with the “Gen/Up” button because I
feel it creates a smoother transition and, to get rid of annoying glitches
in the sound, I insert a number of rows at the beginning of the sequence
to make a soft dip from “0000” to the minimum value. Also, I want the
center point of the vibrato at 0000, so for a vibrato with an amplitude of
9, I would set “Minimum” to “fffc” and “Maximum” to “0004”.
As a side note, a guitarist CAN’T bend a string negatively (well, Steve Vai
probably can, now that I think of it), so if for some reason you want a
vibrato that’s “guitar correct”, set “Minimum” to “0000” and put a posi-
tive value in “Maximum”. (Nothing in this paragraph applies to tremolo
arm vibratos, of course)

28

Arpeggio
Traditionally, arpeggio is a “broken chord”, meaning the harmonic effect
of a chord is created by playing the chord’s notes in quick succession.
In computer music, an arpeggio is one of the oldest ways in the book to
have complex harmonies play out on limited hardware.
In maxYMiser, like almost everything else, an arpeggio is defined as a
sequence containing note offsets, so to make a standard major chord,
you make a sequence containing the offset values relative to whatever
note the chord is played at, in this case “00 00, 00 04, 00 07”. A standard
minor chord would be “00 00, 00 03, 00 07”.
There are three ways to make an instrument play an arpeggio in
maxYMiser: you can either build an arpeggio sequence into the instru-
ment itself, you can trigger an arpeggio sequence in the pattern using
the “Axx” FX command (where “xx” is the arpeggio sequence), or (but this
is limited to 2- or 3-step arpeggios) you can use the “Xyz” FX command
in the pattern, creating the same effect as the arpeggio sequence 0, “y”,
“z”. If “z” is $f, only the “y” value is used, creating a 0, “y” arpeggio. Please
note that “y” and “z” can’t be negative values, and can’t be higher than
$e.
Remember you can use negative values in the sequence. If it makes more
sense to you to play a C chord at the note C in maxYMiser, but you want
it in the order (highest-to-lowest-note) “E - C - G”. The arpeggio sequence
would then be “00 04, 00 00, ff fb”.
Personally, I prefer playing arpeggiated chords from highest to lowest
note, because the ear notices higher notes better than lower ones (mak-
ing chord changes easier to spot), so to play a minor 6th chord, the note
offset sequence I would use would be “00 09, 00 07, 00 03, 00 00”.
IMPORTANT: For an instrument to be able to use arpeggio, the “Arpeg-
gio” block has to be set in the de-tune matrix.

Hammer-on or tapping
A hammer-on is when a note changes to a different note, but without
retriggering the instrument. In real life, “hammer-ons” or “tapping” is
when you play a new, higher, note on a vibrating string by placing a

29

finger on the fretboard, creating a new note without picking the string
(if the new note is lower in pitch, it’s technically called a “hammer-off” in
guitarist language, because you lift a finger off of the fretboard).
In maxYMiser, a hammer-on is created by removing the instrument infor-
mation from the new note. So yes, technically the instrument number,
not the note/octave combination is what causes the replayer to retrigger
the instrument. Please note that to remove the instrument you can’t just
place the cursor over the instrument number and press the “delete” key,
that removes the entire note. Instead, just change the instrument num-
ber to “00”.

Tremolo
A tremolo (when the word is used in tracking, for “real music” other
definitions apply) is like a vibrato, but with the volume changing (“trem-
bling”) instead of the pitch.
In maxYMiser, a tremolo can be created either by building it into the in-
strument, or by triggering a new volume sequence in the pattern, using
the “Lxx” FX command, where “xx” is the volume sequence to replace the
instrument’s own.

30

A case study - a maxYMiser song
To best illustrate a number of different techniques, I put together a
maxYMiser song that I thought I’d walk you through and comment on
what I do, and sometimes even why.

Before we get into the song, some general thoughts
I always leave pattern $00 blank, sometimes I add a “note off” command
(“Caps Lock” key) at the top to stop notes “spilling over” from previous
patterns. The default pattern at a new song position is $00, so having
this pattern empty (or at least silent) will be a time-saver.
I often use vibrato, but I rarely put vibratos in the instrument them-
selves. I prefer setting them in the pattern, for a number of reasons
(which are listed under “Vibrato” in the “How do I do a...?” chapter).
However, that means there’s a sequence unused by instruments, and if
we press the “n” key to get the next unused pattern, that vibrato pattern
is very likely to show up, and if you’re not careful you might overwrite it
with a volume sequence or whatever you’re working on at the time. My
solution is to use one or a few placeholder instruments, instruments that
aren’t ever used in the song but use these sequences, this will “protect”
sequences from being presented as unused. To make sure these instru-
ments are separated from the ones I do use in the patterns, I place them
at the last instrument position ($20) and backwards.
Another “utility sequence” I often use is a “fade out” sequence used for
cutting off notes. Sure, I could use the “note off” command, but that just
kills the volume immediately. By building my own fade out, I can make
a smooth fade out. It’s a good idea to protect these sequences (you may
need more than one, to fade from different instrument levels) by placing
them in a placeholder instrument, as described in the paragraph about
vibrato above.

31

The song
The song file is available at:

http://brainfish.net/atari/maxymiser/hitroad.snd

This song is a cover of “Hit the Road Jack” by Percy Mayfield (although
I don’t believe he ever recorded it himself. Arguably the best-known
recording is the one Ray Charles did in 1961). My arrangement is crappy,
predictable and not very interesting, but it’s not here to give you a cul-
tural experience and enrich your life, we’re here to learn, ok?

Ok, so load the song in maxYMiser by clicking the “DISK OP.” button,
and then the “SNDH” button below the “Load” label. Once it’s loaded,
click the “NORMAL” button to see the song list that shows what order
the patterns play in. Click the “PLAY SNG” button to listen to it at least
once. It’s only just over 38 seconds long. If you want to hear just a single
channel, you can mute and unmute channels using the buttons marked
“Chan” 1-3, “STe” and “DMA” (although the last two aren’t used in this
song).

These buttons mute and unmute the maxYMiser’s 5 channels.

As you will quickly notice, the first channel plays bass, the second plays
lead, and the third plays chords.

http://brainfish.net/atari/maxymiser/hitroad.snd

32

The instruments
The song contains 7 instruments, one of which is a placeholder instru-
ment (“PlaceholderInst” in instrument slot $1f). The first instrument,
“TwinSaw Bass”, is a SID instrument with a custom waveform designed
as two sawteeth, the second quite a bit lower in amplitude. Instrument
$02 is called “PWM Lead”, and is a standard SID sound with a one octave
higher single “blip” at the start, faking a transient. Notice that the vol-
ume envelope reads “$8, $a”; the little volume dip is there to de-empha-
size the one-octave transient a little.
Instruments $03 to $06 are the different chords used. The chords all use
the same Mix and Vol envelopes, the only difference between them is the
arpeggio sequences used (which, by the way, is the same as the numbers
in the name of the instrument, to make my life easier). Also note that
the volume sequence is just a single “$8”, all volume changes are done in
the pattern. This way I can use the same instruments for the choruses
and the verses. If I had been really tight for instrument space, I could
have made just a single instrument for all the chords, and used the “Axx”
FX command to make it arpeggiate. It would, however use up an FX col-
umn, and make the pattern a little harder to “read” while editing.

The song structure
As you can see, the bass channel uses the patterns $01, $0a and $0b. $01
is the default one, used in the choruses, $0a is the verse bass, and $0b is
identical to $0a, except for the little “riff thingie” at the end of the verse,
just before it loops back into the choruses.
The melody line uses the patterns $02 through $06, although $02 is really
just a lead-in for pattern $03.
The chords use the patterns $07, $08, $09 and $0c. $08 is the staccato
chorus chords and $07 is identical to it, but with the first half empty, for
the intro section of the song. $09 and $0c, the verse chords, are identical
except for the little “riff thingie” at the end of $0c.
This song doesn’t use the sample based channels, and that’s why those
patterns are all $00. (in fact, why not familiarize yourself with the sam-
ple based channels by adding drums yourself?)

33

A closer look at a couple of the patterns
You may notice the “Speed” field at the top of the “Normal” page chang-
es all the time, this is a trick to introduce triplet feel into the song. The
bass patterns contain alternating “S08” and “S04” commands, setting the
“Speed” field to $8 and $4 respectively, obviously.
Go to song position $00 using the arrow up and down buttons next to
the song list on the Normal page. Using the “Chan 2” and “Chan 3” but-
tons, mute those two channels and click the “PLAY PTN” button to hear
that pattern over and over. As you can hear, a number of the notes are
cut off using an “L04” command to trigger the volume sequence $04,
which quickly drops the volume to 0. It would be possible to simply drop
the volume to 0 using either the “note off” command, or insert an “f” in
the volume column, but I think this sounds more natural (and you agree,
yes you do).

The melody
Ok, on to the melody, which is where most of the action is. Go to song
position $01, make sure channels 1 and 3 are muted, and channel 2 isn’t,
so you can hear the melody line alone using the “PLAY PTN” button.
Now this is where things get interesting, with lots of articulation. The
first note consists of two notes and three FX commands. What I’m doing
is a C in octave 5 (instrument $02) gliding upwards to the D, and then
vibrato is added.
Row $00: The C note is set, and the “H03” command (pitch slide) is used
to make the pitch rise at speed $03.
Row $01: The D note is set, but without the instrument number, to pre-
vent it from retriggering. Here, the portamento FX command is used to
finish the pitch glide. Now, it might be possible to ignore this step, if you
could find an exact number for the previous row’s “Hxx” that will land
on exactly the correct note, but for some notes it wouldn’t be possible
at all, and at any rate, it will take a lot of testing to get it right. (Oh, and
I suspect you’re wondering how to set a note without instrument num-
ber? Set the note as usual, then edit the instrument number to “00”.)
Row $02: Vibrato sequence $08 is triggered using the “V08” command. If
you load up sequence $08 in the sequence editor, you’ll see I’ve inserted

34

three rows at the start of it, to make the transition from no vibrato to
vibrato smoother (yes, it was clearly audible and very ugly).
Ok, so that’s the first note... Are you sitting comfortably? 8-)
Row $08: To stop the currently playing note, as discussed earlier, I trigger
volume sequence $09 using an “L09” command, but I also drop the pitch
fairly quickly with an “HF0” command (remember, values between $00
and $7f are positive values, with lower values being slower, and values
between $ff and $80 are negative values with $ff being -1, $fe -2 etc).
Row $0f: Again, the “L09” command is used to terminate a note manu-
ally.
Row $14: Here, I do the same C-to-D-pitch glide thingie as at the start of
the pattern, but since the previous note was a C, I just have to use the
portamento command to make the pitch glide up to the D.
Row $20: To make the volume fade up from a lower volume than the
instrument’s own, I do a manual fade using the volume column (remem-
ber, the volume of the channel is subtracted with the value of the vol-
ume column). If I wanted it any faster I would have had to use a volume
sequence, but this sounds good.
Row $26: Yet again, I end a note with a pitch glide down, but with only a
small decrease in volume, so I choose to do it using the volume column.
Now on to song position $02:
Rows $03-$04: Here I want to fake the effect of a guitarist slightly touch-
ing and immediately releasing the tremolo arm, which I do using a por-
tamento. Notice I could use just about any note below C#5, because the
portamento doesn’t have time to reach even a C 5 anyway before row
$04, where the new portamento sets the pitch on its path to D 5. Neither
of these two notes have instrument numbers, of course, because retrig-
gering would completely spoil the effect.
Rows $24-$3c: Here, I do a really really slow fade out using the volume
column.
There’s just one last thing I’d like to show you, at song position $03:
Rows $20-21: Here, using the portamento command, I create a slightly
blue note by first gliding fairly quickly from the A 4 to the E 5, and then
slowing the portamento down to a grind. And as you probably guessed,
this took a couple of tries to get right.

35

The chords
And finally, the chords. Go to song position $01 or $02 (either is fine, the
chords play the same pattern), mute all channels except the third.
Rows $03-$05: So I can reuse the chord instruments, I choose to do the
fade out of the chorus chords using the volume column. It is not as
smooth as it would have been if I had created a volume sequence to do
it, but with arpeggios, the ear is much less discriminating, I find.
Song position $03:
Row $00: Not only are the verse chords played an octave lower than the
chorus chords, they are also static in volume. To push them further back
in the mix, I use the volume column to lower their volume.

Composing using an emulator
As always, there are advantages and disadvantages to using an emulator.
The advantages are very tempting; you don’t need to bring your old ST
out of storage and find a TV set for it (Not to mention disks, where do
you find 3.5” disks costing less than a cornea transplant these days? Also,
floppy disks are not very reliable.), you can use your existing computer
setup, meaning everything you do on the Atari is backed up (yes, you
have backup routines, it’s not the 1980s anymore), and your virtual ST is
simply always available in a window.
The disadvantages depend to a large degree on what emulator you use,
but obviously, you need a computer fast enough to run an emulated
Atari (but even my cheap EEE is fast enough for that). Also, sound emula-
tion seems to be the last thing emulator authors get right (and for good
reason, there’s little point in having perfect sound emulation if the other
parts aren’t working well). And there’s always a bit of confusion when
the machine running the emulator has a keyboard that’s different from
the original machine’s.
Personally, I have never used maxYMiser on a real ST, because I feel
Steem Engine v3.2 does a fantastic job on all the machines I own. And
I feel that I know the YM2149 soundchip well enough (I’ve made music
on it since before the Atari ST series even existed) to claim that Steem’s

36

emulation of it (and the tricks the maxYMiser can throw at it) is as close
to perfect as I could ever wish.
Since Steem is the only Atari ST emulator I’ve used long enough to claim
I know it well, that’s the one I’m going to discuss in this short chapter,
but there are others, and you might very well be happy with one of
those.

Steem and maxYMiser
I’m not going to teach you the basics of Steem and how to use it, there
are resources out there that do this very well. I will, however, point you
to where you can find it:

http://steem.atari.st

...and I’m going to give you some quick “get started” tips:
First of all, Steem supports making a folder on your harddisk an Atari
harddisk. Use that feature. You can work with floppy images, but it’s
messy an unpractical. The folder Steem uses is accessible from your
regular OS too, so you can use that OS’s features to manage files (copying
files, making folders etc was not as easy on the Atari as it is in modern
OS’s).
Second, give the Steem process high priority; the first thing that suffers
when an emulator runs out of CPU time is sound. In the Win32 version
of Steem 3.2, there’s an option in the “General” section of the Options
windows (accessed via the little monkey wrench/adjustable spanner in
the top row of the Steem window) that says “Make Steem high priority”.
Make sure that’s ticked-in.
And third, check the Sound section of the Options window. For the most
honest representation of the sound, set “Output type” to “Direct”. Also, to
avoid unnecessary resampling, set “Frequency” to whatever your sound
card supports natively (usually 44100Hz). Also, play around a little with
the “Delay” setting (which sets latency). If you’re using a pro sound card,
you probably won’t have a problem setting this to 20 or even 0 millisec-
onds, which means there’s a minimal delay between what happens in
the virtual Atari and your sound card’s output. However, on “normal” (or

http://steem.atari.st

37

“consumer”) sound cards, you may have to raise this value. On my EEE
(with a “Realtek HD Audio” sound chip), for example, I can’t go any lower
than 60 milliseconds. To trim it in, start any of the demo songs at a high
value (160 milliseconds or so), exit the Options page to make the change
take effect and listen. Then make the value lower and lower (each time
exiting the Options page) until it starts sounding crap, then back up one
step.
GIVE MY BACK MY MOUSE! Sooner or later, you’re going to notice your
OS’s mouse pointer gets “stolen” by Steem. I e once you’ve clicked in the
Steem window, the only mouse pointer available is going to be the emu-
lated Atari’s mouse pointer. To release your mouse pointer back into your
OS, press the “Pause/break” key.
The same key will rescue you if you accidentally set maxYMiser to
fullscreen mode. In fullscreen mode, the “Pause/break” button will show
a button row at the top of your screen; the rightmost button will drop
you back to windowed mode (at least in the Win32 version, which is the
only one I’ve used).
MIDI support in Steem works reasonably well. It’s certainly worth the
effort to hook up a MIDI keyboard to your PC and let Steem route it into
the emulated Atari when entering notes in maxYMiser. However, with
latency issues (and possibly Steem’s method of forwarding the MIDI data
to the emulated Atari), I wouldn’t recommend using it for realtime play-
ing. It might work better with a real Atari, but I haven’t tested it myself.

Are you missing anything in this guide?
If you can think of other (maxYMiser related) things that need explaining
in this guide, please get in touch with me at per@brainfish.net - if I have
the time, I’ll update this guide, and you can feel better for having helped
improve it, hopefully making maxYMiser even more accessible to other
musicians. Giving back to the scene rocks.

	Cover page
	Contents
	If you read nothing else, read this
	Introduction
	Concepts you should know(and understand)
	Technical terms
	Tracking in general
	YM2149 specifics
	Specific to maxYMiser
	Songs and patterns
	Everything’s a sequence
	Sound channels

	How things work
	First of all, the maxYMiser’s layout
	The HELP page is your friend
	Patterns
	FX commands
	Sequences
	Instruments
	YM and timer based instruments
	Sample based instruments

	Pattern editing - a quick reference
	Song editing - a quick reference

	How do I do a...?
	Note off
	Glissando a k a pitch bend
	Portamento a k a note glide
	Vibrato
	Arpeggio
	Hammer-on or tapping
	Tremolo

	A case study - a maxYMiser song
	Composing using an emulator
	Are you missing anything in this guide?

